CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification
نویسندگان
چکیده
Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater interest than the majority class instances in real-life applications. Recently, several techniques based on sampling methods (under-sampling of the majority class and oversampling the minority class), cost-sensitive learning methods, and ensemble learning have been used in the literature for classifying imbalanced datasets. In this paper, we introduce a new clusteringbased under-sampling approach with boosting (AdaBoost) algorithm, called CUSBoost, for effective imbalanced classification. The proposed algorithm provides an alternative to RUSBoost (random under-sampling with AdaBoost) and SMOTEBoost (synthetic minority over-sampling with AdaBoost) algorithms. We evaluated the performance of CUSBoost algorithm with the stateof-the-art methods based on ensemble learning like AdaBoost, RUSBoost, SMOTEBoost on 13 imbalance binary and multi-class datasets with various imbalance ratios. The experimental results show that the CUSBoost is a promising and effective approach for dealing with highly imbalanced datasets. Keywords—Boosting; Class imbalance; Clustering; Ensemble classifier; Sampling; RUSBoost
منابع مشابه
Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملCluster-Based Sampling Approaches to Imbalanced Data Distributions
For classification problem, the training data will significantly influence the classification accuracy. When the data set is highly unbalanced, classification algorithms tend to degenerate by assigning all cases to the most common outcome. Hence, it is important to select the suitable training data for classification in the imbalanced class distribution problem. In this paper, we propose cluste...
متن کاملCluster-based under-sampling approaches for imbalanced data distributions
For classification problem, the training data will significantly influence the classification accuracy. However, the data in real-world applications often are imbalanced class distribution, that is, most of the data are in majority class and little data are in minority class. In this case, if all the data are used to be the training data, the classifier tends to predict that most of the incomin...
متن کاملUnder-Sampling Approaches for Improving Prediction of the Minority Class in an Imbalanced Dataset
The most important factor of classification for improving classification accuracy is the training data. However, the data in real-world applications often are imbalanced class distribution, that is, most of the data are in majority class and little data are in minority class. In this case, if all the data are used to be the training data, the classifier tends to predict that most of the incomin...
متن کاملBuilding Useful Models from Imbalanced Data with Sampling and Boosting
Building useful classification models can be a challenging endeavor, especially when training data is imbalanced. Class imbalance presents a problem when traditional classification algorithms are applied. These algorithms often attempt to build models with the goal of maximizing overall classification accuracy. While such a model may be very accurate, it is often not very useful. Consider the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.04356 شماره
صفحات -
تاریخ انتشار 2017